

黑龙江省地方计量技术规范

JJF(黑) XXXX-20XX

表观密度测定仪校准规范

Calibration Specification for Apparent Densitometers

(审定稿)

20××-××-××发布

20××一××一××实施

黑龙江省市场监督管理局 发布

表观密度测定仪 校准规范

§ JJF(黑)XXXX—20XX

Calibration Specification for Apparent Densitometers

归口单位:黑龙江省市场监督管理局

主要起草单位: 黑龙江省计量检定测试研究院

中国石油天然气股份有限公司大庆化工研究中心

本规范主要起草人:

原 赫 (黑龙江省计量检定测试研究院)

季荣磊(中国石油天然气股份有限公司大庆化工研究中心)

马丽(中国石油天然气股份有限公司大庆化工研究中心)

张葳葳 (黑龙江省计量检定测试研究院)

张 涛(黑龙江省计量检定测试研究院)

丁海铭(黑龙江省计量检定测试研究院)

吴辰虓 (黑龙江省计量检定测试研究院)

参加起草人:

卢炳瑄 (黑龙江省计量检定测试研究院)

于志鹏(黑龙江省计量检定测试研究院)

巴彩一 (黑龙江省计量检定测试研究院)

目 录

引:	言.		(II)
1	范	围.	• • • • • • • • • • • • • • • • • • • •	(1)
2	引	用	文件	(1)
3	术	语	和计量单位	(1)
4	椒	[述.		(1)
5	H	量均	特性	(2)
6	校	准	条件	(2)
6.	1	环	境条件	(2)
6. 2	2	测量	量标准及其他设备	(2)
7	校	准	项目和校准方法	(2)
7.	1	外交	观与工作正常性检查	(2)
7. 2	2	校社	准项目和方法	(2)
7. 3	3	漏-	斗高度	(3)
7.	4	受	料器内径	(3)
7. 5	5	受	料器容积	(3)
8	校	准组	结果表达	(3)
9	复	校园	时间间隔	(4)
附:	录	A	不锈钢量器衡量法修正系数 $K(t)$ 值表	(5)
附:	录	В	表观密度测定仪校准原始记录格式(推荐性)	(6)
附:	录	С	表观密度测定仪校准证书内页格式(推荐性)	(7)
附:	录	D	漏斗进料口内径校准结果不确定度评定示例	(8)
附:	录	E	受料器容积校准结果不确定度评定示例(10)

引言

JJF 1071—2010《国家计量校准规范编写规则》、JJF 1001—2011《通用计量术语及定义》、JJF 1059.1—2012《测量不确定度评定与表示》共同构成支撑本规范制定工作的基础性系列规范。

本规范主要参考了 GB/T 1033—2008《塑料 非泡沫塑料密度的测定》、GB/T 3402.2—2010《塑料 氯乙烯均聚和共聚树脂 第2部分: 试样制备及性能测定》、GB/T 6343—2009《泡沫塑料及橡胶表观密度的测定》、GB/T 6373—2007《表面活性剂 表观密度的测定》、GB/T 39821—2021《塑料 不能从规定漏斗流出的模塑材料表观密度的测定》。

本规范为首次发布。

表观密度测定仪校准规范

1 范围

本规范适用于表观密度测定仪的校准。

2 引用文件

本规范引用了下列文件:

GB/T 1033-2008 塑料 非泡沫塑料密度的测定

GB/T 3402.2-2010 塑料 氯乙烯均聚和共聚树脂 第2部分: 试样制备及性能测定

GB/T 6343—2009 泡沫塑料及橡胶表观密度的测定

GB/T 6373-2007 表面活性剂 表观密度的测定

GB/T 39821-2021 塑料 不能从规定漏斗流出的模塑材料表观密度的测定

凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注日期的引用文件, 其最新版本(包括所有的修改单)适用于本规范。

3 术语和计量单位

下列术语和定义适用于本文件。

表观密度 apparent density

材料在自然状态下(包含颗粒内部孔隙及颗粒间空隙)的质量与其总体积的比值。 单位: kg/m^3 或 g/cm^3 。

4 概述

表观密度测定仪是一种用于测量物体表观密度的仪器。通过测量装满受料器内固体材料的受料器的质量,计算出表观密度。表观密度测定仪应用领域广泛,包含化工行业、过滤材料、科研领域等。

表观密度测定仪主要由金属架、漏斗、挡板以及受料器组成。

5 计量特性

表观密度测定仪的计量特性见表 1。

表 1 表观密度测定仪的计量特性

序号	计量特性	技术指标				
1	漏斗进料口内径	A型: (56±0.5) mm; B型: (91±0.5) mm				
2	漏斗出料口内径	A型: (33±0.5) mm; B型: (10±0.5) mm				
3	漏斗高度	A型: (115±0.5) mm; B型: (114±0.5) mm				
4	受料器内径	(45±5) mm				
5	受料器容积	(100±1.5) mL				

注:以上技术指标不用于合格性判定,仅供参考。其他类型仪器,技术指标可以参考生产厂家给定参数。

6 校准条件

- 6.1 环境条件
- 6.1.1 温度: (20±5) ℃,温度变化小于1℃/h。
- 6.1.2 湿度: (20~80) %RH。
- 6.1.3 其他条件:实验室应避免震动,校准过程中应保持环境条件稳定。
- 6.2 测量标准及其他设备
- 6.2.1 测量标准
- 6.2.1.1 游标卡尺

测量范围: (0~300) mm, 最大允许误差±0.02mm。

6.2.1.2 电子天平

测量范围: (0~500) g, 分度值 1mg。

- 6.2.2 其他设备
- 6.2.2.1 温度计

测量范围: (10~30) ℃, 分度值 0.1℃。

7 校准项目和校准方法

7.1 外观与工作正常性检查

设备应标明制造厂、仪器规格型号、编号、仪器配件以及附件应齐全。漏斗及受料器内壁应光滑平整。

7.2 校准项目和方法

校准前, 受料器温度需在实验室提前平衡 2h。

7.2.1 漏斗进料口内径

将游标卡尺内侧量爪垂直插入漏斗进料口内壁,缓慢旋转卡尺至最大开度,记录内径测量值。在端口的圆周上均匀选取 3 个测量点,以这 3 次内径测量值的算数平均值作为进料口内径的测量值。

7.2.2 漏斗出料口内径。

按7.2.1 同样方法测量出料口内径。

7.3 漏斗高度

用游标卡尺的深度杆,沿着进料口上边缘圆周方向均匀选取 3 个测量点进行测量,以这 3 次测量值的算数平均值作为漏斗高度测量值。

7.4 受料器内径

将游标卡尺内侧量爪垂直插入受料器内壁,缓慢旋转卡尺至最大开度,记录内径测量值。在端口的圆周上均匀选取 3 个测量点,以这 3 次内径测量值的算数平均值作为进料口内径的测量值。

7.5 受料器容积

将空受料器放在电子天平上,记录空受料器质量 m_1 ,用温度计测量蒸馏水水温 t,然后直接向受料器内逐渐灌注记录温度的蒸馏水,在受料器快要加满时停止,改用进样针进行加注蒸馏水,直到受料器内液面基本与受料器壁持平后停止,记录受料器和水的总质量 m_2 。

水的质量计算见公式(1):

$$m=m_2-m_1 \tag{1}$$

受料器容积 V20 计算见公式(2):

$$V_{20} = m \times K(t) \tag{2}$$

式中:.

$$K(t) = \frac{\rho_B - \rho_A}{\rho_B(\rho_W - \rho_A)} [1 + \beta(t - 20)]_{\circ}$$

K(t)值列于附录 A 中,根据计算出的质量(m)和测定水温所对应的 K(t)值,即可求出被检不锈钢量器在 20°C时的实际容量。

重复上述步骤 3 次,取算数平均值作为容器的测量值。

8 校准结果表达

8.1 校准记录

校准记录推荐格式参见附录B。

8.2 校准结果的处理

校准证书由封面和校准数据组成。校准证书内页推荐格式见附录 C。证书上的信息至少包括以下内容:

- a) 标题: "校准证书";
- b) 实验室名称和地址;
- c) 进行校准的地点(如果与实验室地点不同);
- d) 证书的唯一性标识(如编号),每页及总页数的标识;
- e) 客户的名称和地址;
- f)被校仪器的描述和明确标识(如型号、产品编号等);
- g) 进行校准的日期;
- h) 校准所依据的技术规范的标识,包括名称和代号;
- i) 校准所用测量标准的溯源性及有效性说明;
- j) 校准环境的描述;
- k) 校准结果及其测量不确定度说明;
- 1) 校准员及核验员的签名:
- m) 校准证书批准人的签名、职务或等效说明;
- n) 校准结果仅对被校对象有效的声明;
- o) 未经实验室书面批准,不得部分复制证书的声明;
- p) 对校准规范的偏离的说明。

9 复校时间间隔

复校时间间隔建议为12个月。

由于复校时间间隔的长短是由仪器的使用情况、使用者、仪器本身质量等诸因素所决定的,因此送校单位可根据实际使用情况自主决定复校时间间隔。

附录 A

不锈钢量器衡量法修正系数 K(t) 值表

不锈钢体胀系数=48x10⁻⁶/℃,空气密度 0.0012g/cm³

水温 t/℃	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
15	1.00219	1.00220	1.00221	1.00222	1.00224	1.00224	1.00226	1.00227	1.00228	1.00229
16	1.00230	1.00231	1.00233	1.00233	1.00235	1.00236	1.00237	1.00238	1.00240	1.00240
17	1.00242	1.00244	1.00245	1.00246	1.00247	1.00249	1.00250	1.00252	1.00252	1.00254
18	1.00255	1.00257	1.00258	1.00260	1.00261	1.00263	1.00263	1.00265	1.00267	1.00268
19	1.00270	1.00271	1.00273	1.00274	1.00276	1.00277	1.00279	1.00280	1.00282	1.00283
20	1.00285	1.00286	1.00288	1.00290	1.00292	1.00293	1.00295	1.00296	1.00298	1.00300
21	1.00301	1.00303	1.00305	1.00307	1.00308	1.00310	1.00312	1.00314	1.00315	1.00317
22	1.00319	1.00321	1.00323	1.00325	1.00327	1.00328	1.00331	1.00332	1.00334	1.00336
23	1.00338	1.00339	1.00342	1.00343	1.00345	1.00348	1.00349	1.00352	1.00353	1.00356
24	1.00357	1.00360	1.00361	1.00364	1.00365	1.00368	1.00369	1.00372	1.00374	1.00376
25	1.00378	1.00380	1.00382	1.00384	1.00387	1.00388	1.00391	1.00392	1.00395	1.00397

附录 B

测量3

表观密度测定仪校准原始记录格式(推荐性)

	化 %面质	支/例 (E) 入作义	/住/尔/归 亿 3	く行うとしては	チほり				
委托单位		证书编号							
制造厂		校准日期							
型号规格		校准地点							
出厂编号			温	度					
技术依据 校准人员			湿核型	度 <u></u> 硷人员					
备注			1/25	型 / く グ					
校准使用的计量标准器									
标准器名	称 型号		不确定度/准确		 证书编号及有效期				
1,7 1,2 1111 12	,,,	//	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	25 4 %/	ZZZ 1-7/10 3 DC 14790794				
1. 外观与工作	正常性检查:								
漏斗型号:									
2. 漏斗内径									
进料口:									
测量次数	1	2	3	平均值	示值误差	U _{re1} (k=2)			
测量值									
出料口:									
测量次数	1	2	3	平均值	示值误差	U_{rel} ($k=2$)			
测量值									
3. 漏斗高度:									
测量次数	1	2	3	平均值	示值误差	U_{rel} ($k=2$)			
测量值									
4. 受料器内径									
测量次数	1	2	3	平均值	示值误差	U_{rel} ($k=2$)			
测量值	测量值								
5. 受料器容积:									
纯水温度	受料器空重	受料器满水	受料器容积	受料器平均	示值误差	U_{rel} ($k=2$)			
$^{\circ}$ C		重量		容积					
测量1									
测量2									

表观密度测定仪校准证书内页格式(推荐性)

校准结果										
1. 外观与工作正常性构	佥查:									
漏斗型号:										
2. 计量特性			T	T						
	标准值	实测平均值	示值误差	扩展不确定度						
漏斗进料口内径										
漏斗出料口内径										
漏斗高度										
受料器内径										
受料器容积										
		以下空白								

附录 D

漏斗进料口内径校准结果不确定度评定示例

D.1 概述

D.1.1 被校仪器

表观密度测定仪漏斗进料口,口径规格(56±0.5)mm。

D.1.2 测量标准

数显游标卡尺,测量范围(0~200) mm,最大允许误差 ±0.02 mm。

D.1.3 环境条件

环境温度 20℃; 相对湿度 63%。

D.1.4 测量方法

采用本规范规定的方法进行测量。

D.2 测量模型

$$d = \overline{d}$$

式中:

d——漏斗进料口内径测量值, mm;

 \bar{d} ——漏斗进料口内径的实测平均值,mm;

D.3 标准不确定度分量评定

D.3.1 测量重复性引入的标准不确定度 u_1

在漏斗进料口 3 个点分别测量 1 次直径,数据如下(单位:mm):

由测量重复性引入的标准不确定度分量为:

$$u_1 = \frac{x_{\text{max}} - x_{\text{min}}}{C \times \sqrt{n}} = \frac{56.24 - 56.14}{1.69 \times \sqrt{3}} = 0.034 \text{ mm}$$

D.3.2 数显游标卡尺引入的标准不确定度 u_2

显游标卡尺最大允许误差 ± 0.02 mm,区间半宽 0.02 mm,按均匀分布 $k = \sqrt{3}$,则数显游标卡尺引入的标准不确定度分量为:

$$u_2 = \frac{0.02}{\sqrt{3}} = 0.012$$
mm

D.3.3 测量点位置选择引入的标准不确定度 u₃

因在圆周上选取 3 个点且每个点仅测量 1 次,位置分布对结果的影响相对增大,经验估计区间半宽 $0.05~\mathrm{mm}$,按均匀分布 $k=\sqrt{3}$,则测量点位置选择引入的标准不确定度为:

$$u_3 = \frac{0.05}{\sqrt{3}} = 0.029$$
 mm $_{\circ}$

D.4 合成标准不确定度

标准不确定度汇总见表 D.1。

标准不确 灵敏系数 序号 标准不确定度 不确定度来源 定度符号 c_{i} 测量重复性引入 1 u_1 0.034mm 1 2 数显游标卡尺引入 0.012mm 1 u_2 测量点位置选择引入 3 0.029mm 1 u_3

表 D.1 标准不确定度分量汇总表

以上各项标准不确定度互不相关,则合成标准不确定度为:

$$u_c = \sqrt{u_1^2 + u_2^2 + u_3^2} = \sqrt{0.034^2 + 0.012^2 + 0.029^2} = 0.046$$
mm

D.5 扩展不确定度

取包含因子 k=2,则示值误差校准结果的扩展不确定度为:

$$U = k \times u_c = 2 \times 0.046 = 0.10$$
mm

附录 E

受料器容积校准结果不确定度评定示例

E.1 概述

E.1.1 被校仪器

表观密度测定仪受料器容积规格(100±1.5) mL。

E.1.2 测量标准

电子天平,分度值 1mg; 温度计,分度值 0.1℃。

E.1.3 环境条件

环境温度 20℃; 相对湿度 63%。

E.1.4 测量方法

采用本规范规定的方法进行测量。

E.2 测量模型

$$V = m \times K(t)$$

式中:

V—— 受料器实际容积, mL;

m—— 受料器内纯水的质量, g;

K(t)——不锈钢量器衡量法修正系数。

E.3 灵敏系数

各影响量的灵敏系数计算:

$$c_1 = \frac{\partial V}{\partial m} = K(t) = 1.003$$

E.4 标准不确定度分量评定

E.4.1 用天平测量三次受料器中纯水的质量, 3 次称量结果如下(单位: g):

由测量重复性引入的不确定度分量为:

$$u_1 = \frac{x_{\text{max}} - x_{\text{min}}}{C \times \sqrt{n}} = \frac{99.635 - 99.613}{1.69 \times \sqrt{3}} = 0.0075 \text{ g}$$

水的密度近似 1g/mL,则 $u_1 = 0.0075mL$ 。

E.4.2 电子天平引入的标准不确定度 u₂

经查上级出具的电子天平溯源证书,最大允许±1mg,按照均匀分布计算,则电子 天平引入的标准不确定度为:

$$u_2 = \frac{0.001}{\sqrt{3}} = 0.000577g$$

水的密度近似 1g/mL,则 u2 =0.000577mL。

E.4.3 不锈钢量器衡量法修正系数引入的标准不确定度

根据查表可得,该不确定很小可以忽略。

E.4.4 温度计测量水温引入的标准不确定度 u4

温度计分度值 0.1℃,最大允许误差±0.15℃,按照均匀分布计算,则温度计测量 水温引入的标准不确定度为:

$$u_t = \frac{0.15}{\sqrt{3}} = 0.086$$
°C

20℃时不锈钢容器的膨胀系数 α =48 × 10^{-6} /℃,受料器平均容积约为 99.623mL,水温偏差对容积的影响:

$$u_4 = 99.623 \times 48 \times 10^{-6} \times 0.086 = 0.00041$$
mL

E.5 合成标准不确定度

标准不确定度汇总见表 E.1。

表 E.1 标准不确定度分量汇总表

序号	不确定度来源	标准不确 定度符号	标准不确定度	灵敏系数 <i>c</i> _i
1	受料器容积测量引入的不确定度	u_1	0.0075mL	1.003
2	电子天平引入的不确定度	u_2	0.000577 mL	1.003
4	温度计测量水温引入的不确定度	u_3	0.00041mL	1.0

以上各项标准不确定度互不相关,则合成标准不确定度为:

$$u_c = \sqrt{c_1^2 u_1^2 + c_2^2 u_2^2 + c_3^2 u_3^2} = 0.0075 mL$$

E.6 扩展不确定度

取包含因子 k=2,则受料器容积测量结果的扩展不确定度为: