

黑龙江省地方计量技术规范

JJF(黑) XXXX-2025

容量筒校准规范

Calibration Specification for Capacity Cylinders

(审定稿)

2025-XX-XX 发布

2025-XX-XX 实施

黑龙江省市场监督管理局发布

容量筒校准规范

Calibration Specification for Capacity Cylinders

JJF(黑)XXXX—2025

归口单位:黑龙江省市场监督管理局

主要起草单位: 齐齐哈尔市检验检测中心

本规范主要起草人:

孙菀彬 (齐齐哈尔市检验检测中心)

谭锡鉱(齐齐哈尔市检验检测中心)

张文昭(齐齐哈尔市检验检测中心)

张明锋(齐齐哈尔市检验检测中心)

李晓明(齐齐哈尔市检验检测中心)

许婷婷(齐齐哈尔市检验检测中心)

邵海华(黑龙江省森工总医院)

参加起草人:

徐 卓(齐齐哈尔市检验检测中心)

朱 乐(齐齐哈尔市检验检测中心)

黄湘龙 (齐齐哈尔市检验检测中心)

目 录

引言	([[)
1 范围	(1)
2 引用文件	(1)
3 术语和计量单位	(1)
3.1 容量筒	(1)
3.2 计量单位	(1)
4 概述	(1)
5 计量特性	(2)
6 校准条件	(2)
6.1 环境条件	(2)
6.2 测量标准及其他设备	(2)
7 校准项目和校准方法	(2)
7.1 外观	(2)
7.2 容量实际值	(2)
7.3 示值误差	(3)
8 校准结果的表达	(4)
8.1 校准记录	(4)
8.2 校准结果的处理	(4)
9 复校时间间隔	(4)
附录 A 纯水密度与温度对照表	(5)
附录 B 容量筒校准记录格式(推荐性)	(6)
附录 C 容量筒校准证书内页格式(推荐性)	(7)
附录 D 容量筒容量测量结果的不确定度评定示例	(8)

引言

JJF 1071—2010《国家计量校准规范编写规则》、JJF 1001—2011《通用计量术语及定义》和 JJF 1059.1—2012《测量不确定度评定与表示》共同构成支撑本规范制定工作的基础性系列规范。

本规范主要参考了 GB/T 6682 《分析实验室用水规格和试验方法》和 SL 127—2017 《容量筒校验方法》。

本规范为首次发布。

容量筒校准规范

1 范围

本规范适用于容量筒的校准。

2 引用文件

本规范引用了下列文件:

GB/T 6682 分析实验室用水规格和试验方法

SL 127—2017 容量筒校验方法

凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。

3 术语和计量单位

3.1 容量筒 capacity cylinder

容量筒是用于测量建筑用砂、石和各种轻集料堆积密度的专用仪器。

[来源: SL 127—2017, 概述 3]

3.2 计量单位

容量单位: 升,符号L; 立方米,符号m3。

质量单位: 克,符号g: 千克,符号kg。

4 概述

容量筒是测量建筑用砂、石和各种轻集料松散堆积密度和紧密堆积密度试验的专用仪器。广泛应用于交通、市政、水利等涉及建筑的各个领域。通过称量容量筒中水的质量,利用水的密度计算实际容量。常用的规格有1L、2L、3L、5L、7L、10L、15L、20L、30L、50L、80L。

容量筒主要由把手、筒壁、筒底组成,筒体为金属材料制成。容量筒结构示意图 1。

图 1 容量筒结构示意图

5 计量特性

容量筒容量最大允许误差为±2%。

6 校准条件

- 6.1 环境条件
- 6.1.1 温度: (20±5) ℃。[来源: SL 127—2017, 校验环境 5.1.2]
- 6.1.2 室内环境清洁、光线充足、无腐蚀性气体和振动干扰。[来源: SL 127—2017, 校验环境 5.1.1]

6.2 测量标准及其他设备

校准用测量标准及其他设备应符合表1要求。

序号	名称	测量范围	技术要求		
1	电子天平	(0~20) kg	实际分度值: d≤0.1 g, 准确度等级(Ⅲ)级		
2	电子秤	(0∼50) kg	实际分度值: d≤10 g, 准确度等级 ① 级		
3	电子秤	(0~100) kg	实际分度值: d≤100 g, 准确度等级 □ 级		
4	温度计	(0~50)℃ 分度值: 0.1 ℃			
5	校准介质	纯水(蒸馏水或去离子水) [来源:GB/T 6682—2008 分析实验室用水规格和试验方法 4.3]			
6	平板玻璃	尺寸略大于容量筒筒口直径			

表 1 测量标准及其他设备

7 校准项目和校准方法

7.1 外观

容量筒的外筒壁应平整光滑、不得有凹凸现象,不得有杂质和污垢,盛满水后无漏水或渗水现象。

7.2 容量实际值

校准前准备:校准介质和容量筒应提前4h放入室内,校准用介质的温度与室温之差不得大于 2 $^{\circ}$ C。

a) 1 L容量筒: 称量干燥状态下容量筒的质量 W_1 和玻璃板的质量 W_2 。将容量筒平稳放置在水平台面上,注满纯水。然后将玻璃板紧贴筒口滑移,如有气泡则向筒内添水,排除气泡。擦干容量筒外壁后称量容量筒、玻璃板和水的总质量 W_3 。

按公式(1)计算容量筒的容量实际值1/8:

$$V_{s} = \frac{W_{3} - W_{2} - W_{1}}{\rho_{t}} \times 1000 \tag{1}$$

式中:

 $V_{\rm s}$ ——容量筒的实际容量, L;

 W_1 ——容量筒的质量, kg;

 W_2 ——平板玻璃的质量, kg;

 W_3 ——容量筒、平板玻璃和纯水的总质量, kg;

 ρ_t ——实验温度 t 时的纯水的密度, kg/m^3 ,见(附录 A)。

b)2 L、3 L、5 L、7 L、10 L、15 L、20 L、30 L、50 L、80 L 容量筒: 称量并记录干燥状态下容量筒的质量 W_1 ,将容量筒放置在水平的台面上,注满纯水,擦干容量筒外壁后称量容量筒和水的总质量 W_4 。

按公式(2)计算容量筒的容量实际值 V_s :

$$V_{\rm s} = \frac{W_4 - W_1}{\rho_{\rm t}} \times 1000 \tag{2}$$

式中:

 W_4 ——容量筒和纯水的总质量, kg。

c) 重复测量 3 次, 取 3 次平均值作为测量结果。

7.3 示值误差

按公式(3)计算容量筒容量示值误差:

$$\Delta V = \frac{V_{\rm s} - V_{\rm b}}{V_{\rm b}} \times 100\% \tag{3}$$

式中:

 ΔV ——示值误差,%;

 V_{s} ——容量筒的实际容量, L;

V. ——容量筒的标称容量, L。

8 校准结果的表达

8.1 校准记录

校准记录推荐格式参见附录B。

8.2 校准结果的处理

校准证书由封面和校准数据组成。校准证书内页推荐格式见附录 C。证书上的信息至少包括以下内容:

- a) 标题"校准证书";
- b) 实验室名称和地址;
- c) 进行校准的地点;
- d) 证书或报告的唯一性标识,每页及总页的标识;
- e) 客户的名称和地址:
- f) 被校对象的描述和明确标识;
- g) 进行校准日期,如果与校准结果的有效性应用有关时,应说明被校准对象的接收日期;
- h) 如果与校准结果的有效性和应用有关时,应对抽样程序进行说明;
- i) 对校准所依据的技术规范的标识,包括名称及代号;
- i) 校准环境的描述;
- k) 校准结果及测量不确定度的说明;
- 1) 对校准规范的偏离的说明;
- m) 校准证书或校准报告签发人的签名;
- n) 校准结果仅对被校对象有效的声明;
- o) 未经实验室书面批准,不得部分复制证书的声明。

9 复校时间间隔

复校时间间隔建议为12个月。

由于复校时间间隔的长短是由仪器的使用情况、使用者、仪器本身质量等诸因素所决定的,因此送校单位可根据实际使用情况自主决定复校时间间隔。

附录 A

纯水密度与温度对照表

水温 t/℃	水的密度ρ _t /(kg/m³)	水温 t/°C	水的密度ρ _t /(kg/m³)	水温 t/°C	水的密度ρ _t /(kg/m³)
15.0	999.099	18.4	998.520	21.8	997.815
15.1	999.084	18.5	998.501	21.9	997.792
15.2	999.069	18.6	998.482	22.0	997.769
15.3	999.053	18.7	998.463	22.1	997.747
15.4	999.038	18.8	998.443	22.2	997.724
15.5	999.022	18.9	998.424	22.3	997.701
15.6	999.066	19.0	998.404	22.4	997.678
15.7	998.991	19.1	998.385	22.5	997.655
15.8	998.975	19.2	998.365	22.6	997.631
15.9	998.959	19.3	998.345	22.7	997.608
16.0	998.943	19.4	998.325	22.8	998.584
16.1	998.926	19.5	998.305	22.9	997.561
16.2	998.910	19.6	998.285	23.0	997.537
16.3	998.893	19.7	998.265	23.1	997.513
16.4	998.876	19.8	998.244	23.2	997.490
16.5	998.860	19.9	998.224	23.3	997.466
16.6	998.843	20.0	998.203	23.4	997.442
16.7	998.826	20.1	998.182	23.5	997.417
16.8	998.809	20.2	998.162	23.6	997.393
16.9	998.792	20.3	998.141	23.7	997.396
17.0	998.774	20.4	998.120	23.8	997.344
17.1	998.757	20.5	998.099	23.9	997.320
17.2	998.739	20.6	998.077	24.0	997.295
17.3	998.722	20.7	998.056	24.1	997.270
17.4	998.704	20.8	998.035	24.2	997.246
17.5	998.686	20.9	998.013	24.3	997.221
17.6	998.668	21.0	997.991	24.4	997.195
17.7	998.650	21.1	997.970	24.5	997.170
17.8	998.632	21.2	997.948	24.6	997.145
17.9	998.613	21.3	997.926	24.7	997.120
18.0	998.595	21.4	997.904	24.8	997.094
18.1	998.576	21.5	997.882	24.9	997.069
18.2	998.557	21.6	997.859	25.0	997.043
18.3	998.539	21.7	997.837	/	/

附录 B

容量筒校准记录格式(推荐性)

委托单位	记录编号	
仪器名称	温度	
型号规格	相对湿度	
出厂编号	校准依据	
制造厂	校准地点	
校准人员	校准日期	
核验人员	备注	

校准使用的计量标准器具

标准器名称	型号/规格	测量范围	不确定度/ 准确度等级/ 最大允许误差	证书编号及 有效期

纯水温度/℃	纯水密度 / kg/ m³	
容量筒的质量 W_1/\log		
平板玻璃的质量 $W_2/$ kg		
容量筒、平板玻璃和纯水的总质量 $W_3/$ kg		
容量实际值 $W_3 - W_2 - W_1$ /L		
容量实际平均值 $\overline{W_3-W_2-W_1}$ / L		
标称容量 /L		
示值误差 /%		
相对扩展不确定度 U/%		
(k=2)		

纯水温度/℃	纯水密度 / kg/m³
容量筒的质量 $W_{ m l}/{ m kg}$	
容量筒和纯水的总质量 W_4/kg	
容量实际值 $W_4 - W_1$ /L	
容量实际平均值 $\overline{W_4-W_1}$ / L	
标称容量 /L	
示值误差 / %	
相对扩展不确定度 U/% (k=2)	

附录C

容量筒校准证书内页格式(推荐性)

校准点 /L	示值误差 / %	相对扩展不确定度 U/% (k=2)
1		
2		
3		
5		
7		
10		
15		
20		
30		
50		
80		

以下空白

附录D

容量筒容量测量结果的不确定度评定示例

D.1 概述

- D.1.1 被校仪器: 3L容量筒。
- D.1.2 测量标准: 电子天平: 测量范围($0\sim20$)kg, 准确度等级: ②数。 温度计: 测量范围($0\sim50$)°C, 分度值 0.1 °C。
- D.1.3 环境条件: 温度 (20 ± 5) ℃,校准用介质的温度与室温之差不得大于 2 ℃。
- D.1.4 测量方法: 依据本规范中的规定。
- D.2 测量模型:

$$V_{\rm s} = \frac{W_4 - W_1}{\rho_t} \times 1000 \tag{1}$$

式中:

 $V_{\rm s}$ ——容量筒的实际容量, L;

 W_1 ——容量筒的质量,kg;

 W_{4} ——容量筒和纯水的总质量,kg;

 ρ_t ——实验温度 t 时的纯水的密度,kg/m³。

D.3 灵敏度系数:

$$c(W_4 - W_1) = \frac{\partial V}{\partial (W_4 - W_1)} = \frac{1}{\rho_c}$$

$$c(\rho_t) = \frac{\partial V}{\partial \rho_t} = -\frac{W_4 - W_1}{\rho_t^2} = -\frac{V}{\rho_t}$$

D.4 标准不确定度分量评定

D.4.1 测量重复性引入的标准不确定度分量 $u(m_1)$

取3 L 容量筒, 重复测量3次, 得到一组测得值, 见表D.1。

表D. 1 重复测量的测得值				
测得值	1	2	3	
W_{1}	885.6	885.6	885.6	
W_4	3790.8	3804.5	3818.3	
$W_4 - W_1$	2905.2	2918.9	2932.7	
$\overline{W_4 - W_1}$	2918.9			

单次测量的实验标准差,采用极差法计算:

$$s = \frac{V_{\text{max}} - V_{\text{min}}}{C} = 16.27g$$

查表 C=1.69。

实际测量情况,在重复性条件下连续测量 3 次,以 3 次测量算术平均值为测量结果,则测量重复性引入的标准不确定度为:

$$u(m_1) = \frac{s}{\sqrt{3}} = 9.39g$$

D.4.2 电子天平引入的标准不确定度分量 $u(m_2)$

20kg 电子天平最大允许误差为 \pm 1.5 g,服从均匀分布,取包含因子 $k = \sqrt{3}$,则电子天平引入的不确定度分量 $u(m_2)$ 为:

$$u(m_2) = \frac{1.5g}{\sqrt{3}} = 0.87g$$

D.4.3 输入量 ρ , 的标准不确定度 $u(\rho)$ 的评定

 $u(\rho_{\rm t})$ 主要是温度变化引起的标准不确定度,引起温度变化主要有两个因素,温度计的最大允许误差以及水温的变化,根据分析,温度变化 \pm 0.3 °C,输入量 $u(\rho_{\rm t})$ 变化量与u(m)相比可忽略。

D.5 合成标准不确定度

标准不确定度分量汇总见表 D.2。

表 D.2 标准不确定度分量汇总表

不确定度分量	不确定度来源	标准不确定度	灵敏系数 c_i	$ c_i u_i$
$u(m_1)$	测量重复性引起的不确定度	9.39 g	1.0023 kg/m ³	0.0094 L
$u(m_2)$	电子天平引入的不确定度	0.87 g	1.0023 kg/m ³	0.0009 L

注: 水温 22.4°C, ρ_t =997.678 kg/m³

则合成标准不确定度为:

$$u_{\rm c} = \sqrt{c_1^2 u_1^2 + c_2^2 u_2^2} = 0.0094 \,{\rm L}$$

D.6 扩展不确定度

取包含因子 k=2,则 3 L 容量筒测量结果扩展不确定度为:

$$U = k \times u_c = 0.0188L$$

D.7 相对扩展不确定度

取包含因子 k=2,则 3 L 容量筒测量结果相对扩展不确定度为:

$$U_{\rm rel} = \frac{U}{3L} \times 100\% = 0.63\%$$